MATH 20D Spring 2023 Lecture 16.
 Properties of the Laplace Transform

Announcements

- Homework 5 has been released due next Tuesday at 10pm.

Announcements

- Homework 5 has been released due next Tuesday at 10pm.
- Matlab Assignment 3 due this Friday.

Announcements

- Homework 5 has been released due next Tuesday at 10pm.
- Matlab Assignment 3 due this Friday.
- Lecture for Friday May 12th and Monday May 15th will be recorded asynchronously and uploaded to Canvas. There will be no in person lecture on Friday May 12th and Monday May 15th.

Outline

(1) Existence of Laplace Transform
(2) Translation Property of Laplace Transform
(3) The Laplace Transform and Derivatives

Contents

(1) Existence of Laplace Transform
(2) Translation Property of Laplace Transform
(3) The Laplace Transform and Derivatives

Last Time

- $f:[0, \infty) \rightarrow \mathbb{R}$, the Laplace Transform $\mathscr{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$,

Last Time

- $f:[0, \infty) \rightarrow \mathbb{R}$, the Laplace Transform $\mathscr{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$, e.g. if $a \in \mathbb{R}$ is constant,

$$
\mathscr{L}\left\{e^{a t}\right\}(s)=\int_{0}^{\infty} e^{-s t} e^{a t} d t
$$

Last Time

- $f:[0, \infty) \rightarrow \mathbb{R}$, the Laplace Transform $\mathscr{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$, e.g. if $a \in \mathbb{R}$ is constant,

$$
\mathscr{L}\left\{e^{a t}\right\}(s)=\int_{0}^{\infty} e^{-s t} e^{a t} d t= \begin{cases}\frac{1}{s-a}, & s>a \\ \text { undefined, } & s \leqslant a\end{cases}
$$

Last Time

- $f:[0, \infty) \rightarrow \mathbb{R}$, the Laplace Transform $\mathscr{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$, e.g. if $a \in \mathbb{R}$ is constant,

$$
\mathscr{L}\left\{e^{a t}\right\}(s)=\int_{0}^{\infty} e^{-s t} e^{a t} d t= \begin{cases}\frac{1}{s-a}, & s>a \\ \text { undefined, }, & s \leqslant a\end{cases}
$$

So $\mathscr{L}\left\{e^{a t}\right\}$ is the function $\mathscr{L}\left\{e^{a t}\right\}:(a, \infty) \rightarrow \mathbb{R}, \mathscr{L}\{f\}(s)=\frac{1}{s-a}$.

Last Time

- $f:[0, \infty) \rightarrow \mathbb{R}$, the Laplace Transform $\mathscr{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$, e.g. if $a \in \mathbb{R}$ is constant,

$$
\mathscr{L}\left\{e^{a t}\right\}(s)=\int_{0}^{\infty} e^{-s t} e^{a t} d t= \begin{cases}\frac{1}{s-a}, & s>a \\ \text { undefined, } & s \leqslant a\end{cases}
$$

So $\mathscr{L}\left\{e^{a t}\right\}$ is the function $\mathscr{L}\left\{e^{a t}\right\}:(a, \infty) \rightarrow \mathbb{R}, \mathscr{L}\{f\}(s)=\frac{1}{s-a}$.

- Linearity of \mathscr{L} : Suppose $f_{1}, f_{2}:[0, \infty) \rightarrow \mathbb{R}$ are such that $\mathscr{L}\left\{f_{1}\right\}(s)$ and $\mathscr{L}\left\{f_{2}\right\}(s)$ converge for $s>\alpha$.

Last Time

- $f:[0, \infty) \rightarrow \mathbb{R}$, the Laplace Transform $\mathscr{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$, e.g. if $a \in \mathbb{R}$ is constant,

$$
\mathscr{L}\left\{e^{a t}\right\}(s)=\int_{0}^{\infty} e^{-s t} e^{a t} d t= \begin{cases}\frac{1}{s-a}, & s>a \\ \text { undefined, }, & s \leqslant a\end{cases}
$$

So $\mathscr{L}\left\{e^{a t}\right\}$ is the function $\mathscr{L}\left\{e^{a t}\right\}:(a, \infty) \rightarrow \mathbb{R}, \mathscr{L}\{f\}(s)=\frac{1}{s-a}$.

- Linearity of \mathscr{L} : Suppose $f_{1}, f_{2}:[0, \infty) \rightarrow \mathbb{R}$ are such that $\mathscr{L}\left\{f_{1}\right\}(s)$ and $\mathscr{L}\left\{f_{2}\right\}(s)$ converge for $s>\alpha$. If C_{1} and C_{2} are constants and $s>\alpha$ then

$$
\mathscr{L}\left\{C_{1} f_{1}+C_{2} f_{2}\right\}(s)=C_{1} \mathscr{L}\{f\}(s)+C_{2} \mathscr{L}\left\{f_{2}\right\}(s)
$$

Last Time

- $f:[0, \infty) \rightarrow \mathbb{R}$, the Laplace Transform $\mathscr{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$, e.g. if $a \in \mathbb{R}$ is constant,

$$
\mathscr{L}\left\{e^{a t}\right\}(s)=\int_{0}^{\infty} e^{-s t} e^{a t} d t= \begin{cases}\frac{1}{s-a}, & s>a \\ \text { undefined, } & s \leqslant a\end{cases}
$$

So $\mathscr{L}\left\{e^{a t}\right\}$ is the function $\mathscr{L}\left\{e^{a t}\right\}:(a, \infty) \rightarrow \mathbb{R}, \mathscr{L}\{f\}(s)=\frac{1}{s-a}$.

- Linearity of \mathscr{L} : Suppose $f_{1}, f_{2}:[0, \infty) \rightarrow \mathbb{R}$ are such that $\mathscr{L}\left\{f_{1}\right\}(s)$ and $\mathscr{L}\left\{f_{2}\right\}(s)$ converge for $s>\alpha$. If C_{1} and C_{2} are constants and $s>\alpha$ then

$$
\mathscr{L}\left\{C_{1} f_{1}+C_{2} f_{2}\right\}(s)=C_{1} \mathscr{L}\{f\}(s)+C_{2} \mathscr{L}\left\{f_{2}\right\}(s)
$$

e.g. if $f(t)=3 e^{2 t}-5 e^{-t}+2$ then for $s>2$

$$
\mathscr{L}\{f\}(s)
$$

Last Time

- $f:[0, \infty) \rightarrow \mathbb{R}$, the Laplace Transform $\mathscr{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$, e.g. if $a \in \mathbb{R}$ is constant,

$$
\mathscr{L}\left\{e^{a t}\right\}(s)=\int_{0}^{\infty} e^{-s t} e^{a t} d t= \begin{cases}\frac{1}{s-a}, & s>a \\ \text { undefined, } & s \leqslant a\end{cases}
$$

So $\mathscr{L}\left\{e^{a t}\right\}$ is the function $\mathscr{L}\left\{e^{a t}\right\}:(a, \infty) \rightarrow \mathbb{R}, \mathscr{L}\{f\}(s)=\frac{1}{s-a}$.

- Linearity of \mathscr{L} : Suppose $f_{1}, f_{2}:[0, \infty) \rightarrow \mathbb{R}$ are such that $\mathscr{L}\left\{f_{1}\right\}(s)$ and $\mathscr{L}\left\{f_{2}\right\}(s)$ converge for $s>\alpha$. If C_{1} and C_{2} are constants and $s>\alpha$ then

$$
\mathscr{L}\left\{C_{1} f_{1}+C_{2} f_{2}\right\}(s)=C_{1} \mathscr{L}\{f\}(s)+C_{2} \mathscr{L}\left\{f_{2}\right\}(s)
$$

e.g. if $f(t)=3 e^{2 t}-5 e^{-t}+2$ then for $s>2$

$$
\mathscr{L}\{f\}(s)=\mathscr{L}\left\{3 e^{2 t}-5 e^{-t}+2\right\}
$$

Last Time

- $f:[0, \infty) \rightarrow \mathbb{R}$, the Laplace Transform $\mathscr{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$, e.g. if $a \in \mathbb{R}$ is constant,

$$
\mathscr{L}\left\{e^{a t}\right\}(s)=\int_{0}^{\infty} e^{-s t} e^{a t} d t= \begin{cases}\frac{1}{s-a}, & s>a \\ \text { undefined, } & s \leqslant a\end{cases}
$$

So $\mathscr{L}\left\{e^{a t}\right\}$ is the function $\mathscr{L}\left\{e^{a t}\right\}:(a, \infty) \rightarrow \mathbb{R}, \mathscr{L}\{f\}(s)=\frac{1}{s-a}$.

- Linearity of \mathscr{L} : Suppose $f_{1}, f_{2}:[0, \infty) \rightarrow \mathbb{R}$ are such that $\mathscr{L}\left\{f_{1}\right\}(s)$ and $\mathscr{L}\left\{f_{2}\right\}(s)$ converge for $s>\alpha$. If C_{1} and C_{2} are constants and $s>\alpha$ then

$$
\mathscr{L}\left\{C_{1} f_{1}+C_{2} f_{2}\right\}(s)=C_{1} \mathscr{L}\{f\}(s)+C_{2} \mathscr{L}\left\{f_{2}\right\}(s)
$$

e.g. if $f(t)=3 e^{2 t}-5 e^{-t}+2$ then for $s>2$

$$
\begin{aligned}
\mathscr{L}\{f\}(s) & =\mathscr{L}\left\{3 e^{2 t}-5 e^{-t}+2\right\} \\
& =3 \mathscr{L}\left\{e^{2 t}\right\}(s)-5 \mathscr{L}\left\{e^{-t}\right\}(s)+2 \mathscr{L}\left\{e^{0 \cdot t}\right\}(s)
\end{aligned}
$$

Last Time

- $f:[0, \infty) \rightarrow \mathbb{R}$, the Laplace Transform $\mathscr{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$, e.g. if $a \in \mathbb{R}$ is constant,

$$
\mathscr{L}\left\{e^{a t}\right\}(s)=\int_{0}^{\infty} e^{-s t} e^{a t} d t= \begin{cases}\frac{1}{s-a}, & s>a \\ \text { undefined, }, & s \leqslant a\end{cases}
$$

So $\mathscr{L}\left\{e^{a t}\right\}$ is the function $\mathscr{L}\left\{e^{a t}\right\}:(a, \infty) \rightarrow \mathbb{R}, \mathscr{L}\{f\}(s)=\frac{1}{s-a}$.

- Linearity of \mathscr{L} : Suppose $f_{1}, f_{2}:[0, \infty) \rightarrow \mathbb{R}$ are such that $\mathscr{L}\left\{f_{1}\right\}(s)$ and $\mathscr{L}\left\{f_{2}\right\}(s)$ converge for $s>\alpha$. If C_{1} and C_{2} are constants and $s>\alpha$ then

$$
\mathscr{L}\left\{C_{1} f_{1}+C_{2} f_{2}\right\}(s)=C_{1} \mathscr{L}\{f\}(s)+C_{2} \mathscr{L}\left\{f_{2}\right\}(s)
$$

e.g. if $f(t)=3 e^{2 t}-5 e^{-t}+2$ then for $s>2$

$$
\begin{aligned}
\mathscr{L}\{f\}(s) & =\mathscr{L}\left\{3 e^{2 t}-5 e^{-t}+2\right\} \\
& =3 \mathscr{L}\left\{e^{2 t}\right\}(s)-5 \mathscr{L}\left\{e^{-t}\right\}(s)+2 \mathscr{L}\left\{e^{0 \cdot t}\right\}(s) \\
& =\frac{3}{s-2}-\frac{5}{s+1}+\frac{2}{s} .
\end{aligned}
$$

Existence of the Laplace Transform I

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function. If $0 \leqslant a \leqslant b<\infty$ then the definite integral

$$
\int_{a}^{b} f(t) d t
$$

exists provided $f(t)$ is piecewise continuous over the interval $[a, b]$.

Existence of the Laplace Transform I

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function. If $0 \leqslant a \leqslant b<\infty$ then the definite integral

$$
\int_{a}^{b} f(t) d t
$$

exists provided $f(t)$ is piecewise continuous over the interval $[a, b]$.

- f piecewise continuous on $[a, b] \Longleftrightarrow f$ is continuous on $[a, b]$ except possibily at finitely points where f has jump discontinuities.

Existence of the Laplace Transform I

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function. If $0 \leqslant a \leqslant b<\infty$ then the definite integral

$$
\int_{a}^{b} f(t) d t
$$

exists provided $f(t)$ is piecewise continuous over the interval $[a, b]$.

- f piecewise continuous on $[a, b] \Longleftrightarrow f$ is continuous on $[a, b]$ except possibily at finitely points where f has jump discontinuities.

Definition

f is piecewise continuous on $[0, \infty)$ if f is piecewise continuous on $[0, b) \forall b>0$.

Existence of the Laplace Transform I

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function. If $0 \leqslant a \leqslant b<\infty$ then the definite integral

$$
\int_{a}^{b} f(t) d t
$$

exists provided $f(t)$ is piecewise continuous over the interval $[a, b]$.

- f piecewise continuous on $[a, b] \Longleftrightarrow f$ is continuous on $[a, b]$ except possibily at finitely points where f has jump discontinuities.

Definition
 f is piecewise continuous on $[0, \infty)$ if f is piecewise continuous on $[0, b) \forall b>0$.

Theorem

Suppose f is piecewise continuous.

Existence of the Laplace Transform I

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function. If $0 \leqslant a \leqslant b<\infty$ then the definite integral

$$
\int_{a}^{b} f(t) d t
$$

exists provided $f(t)$ is piecewise continuous over the interval $[a, b]$.

- f piecewise continuous on $[a, b] \Longleftrightarrow f$ is continuous on $[a, b]$ except possibily at finitely points where f has jump discontinuities.

Definition

f is piecewise continuous on $[0, \infty)$ if f is piecewise continuous on $[0, b) \forall b>0$.

Theorem

Suppose f is piecewise continuous. If there exist constants T, M, and α such that for all $t \geqslant T$

$$
|f(t)| \leqslant M e^{\alpha t}, \quad \text { (exponential order } \alpha \text {) }
$$

Existence of the Laplace Transform I

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function. If $0 \leqslant a \leqslant b<\infty$ then the definite integral

$$
\int_{a}^{b} f(t) d t
$$

exists provided $f(t)$ is piecewise continuous over the interval $[a, b]$.

- f piecewise continuous on $[a, b] \Longleftrightarrow f$ is continuous on $[a, b]$ except possibily at finitely points where f has jump discontinuities.

Definition

f is piecewise continuous on $[0, \infty)$ if f is piecewise continuous on $[0, b) \forall b>0$.

Theorem

Suppose f is piecewise continuous. If there exist constants T, M, and α such that for all $t \geqslant T$

$$
|f(t)| \leqslant M e^{\alpha t}, \quad \text { (exponential order } \alpha \text {) }
$$

then $\mathscr{L}\{f\}(s):=\lim _{N \rightarrow \infty} \int_{0}^{N} e^{-s t} f(t) d t$ converges for all $s>\alpha$.

Existence of the Laplace Transform II

Example

Determine which of the following functions satisfy the hypotheses of the theorem on the previous slide.
(a) $\quad f(t)=\left\{\begin{array}{ll}1 /(t-1), & t \neq 1 \\ 0, & t=1\end{array}\right.$,
(b) $f(t)= \begin{cases}1, & 0 \leqslant t<5 \\ e^{t^{2}}, & 5 \leqslant t<\infty .\end{cases}$
(c) $f(t)= \begin{cases}e^{t^{2}}, & 0 \leqslant t<30 \\ e^{3 t} \sin (2 t), & t \geqslant 30 .\end{cases}$

Existence of the Laplace Transform II

Example

Determine which of the following functions satisfy the hypotheses of the theorem on the previous slide.
(a) $\quad f(t)=\left\{\begin{array}{ll}1 /(t-1), & t \neq 1 \\ 0, & t=1\end{array}\right.$,
(b) $f(t)= \begin{cases}1, & 0 \leqslant t<5 \\ e^{t^{2}}, & 5 \leqslant t<\infty .\end{cases}$
(c) $f(t)= \begin{cases}e^{t^{2}}, & 0 \leqslant t<30 \\ e^{3 t} \sin (2 t), & t \geqslant 30 .\end{cases}$
(a) Not piecewise continuous at $t=1$. So the hypotheses are not satisfied.

Existence of the Laplace Transform II

Example

Determine which of the following functions satisfy the hypotheses of the theorem on the previous slide.
(a) $\quad f(t)=\left\{\begin{array}{ll}1 /(t-1), & t \neq 1 \\ 0, & t=1\end{array}\right.$,
(b) $f(t)= \begin{cases}1, & 0 \leqslant t<5 \\ e^{t^{2}}, & 5 \leqslant t<\infty .\end{cases}$
(c) $f(t)= \begin{cases}e^{t^{2}}, & 0 \leqslant t<30 \\ e^{3 t} \sin (2 t), & t \geqslant 30 .\end{cases}$
(a) Not piecewise continuous at $t=1$. So the hypotheses are not satisfied.
(b) Not of exponential order. So the hypotheses are not satisfied.

Existence of the Laplace Transform II

Example

Determine which of the following functions satisfy the hypotheses of the theorem on the previous slide.
(a) $\quad f(t)=\left\{\begin{array}{ll}1 /(t-1), & t \neq 1 \\ 0, & t=1\end{array}\right.$,
(b) $f(t)= \begin{cases}1, & 0 \leqslant t<5 \\ e^{t^{2}}, & 5 \leqslant t<\infty .\end{cases}$
(c) $f(t)= \begin{cases}e^{t^{2}}, & 0 \leqslant t<30 \\ e^{3 t} \sin (2 t), & t \geqslant 30 .\end{cases}$
(a) Not piecewise continuous at $t=1$. So the hypotheses are not satisfied.
(b) Not of exponential order. So the hypotheses are not satisfied.
(c) The hypotheses are satisfied, for $t \geqslant 30,|f(t)|=\left|\sin (t) e^{3 t}\right| \leqslant e^{3 t}$.

Existence of the Laplace Transform II

Example

Determine which of the following functions satisfy the hypotheses of the theorem on the previous slide.
(a) $\quad f(t)=\left\{\begin{array}{ll}1 /(t-1), & t \neq 1 \\ 0, & t=1\end{array}\right.$,
(b) $f(t)= \begin{cases}1, & 0 \leqslant t<5 \\ e^{t^{2}}, & 5 \leqslant t<\infty .\end{cases}$
(c) $f(t)= \begin{cases}e^{t^{2}}, & 0 \leqslant t<30 \\ e^{3 t} \sin (2 t), & t \geqslant 30 .\end{cases}$
(a) Not piecewise continuous at $t=1$. So the hypotheses are not satisfied.
(b) Not of exponential order. So the hypotheses are not satisfied.
(c) The hypotheses are satisfied, for $t \geqslant 30,|f(t)|=\left|\sin (t) e^{3 t}\right| \leqslant e^{3 t}$. By the theorem $\mathscr{L}\{f\}(s)$ is defined for $s>3$.

Existence of the Laplace Transform II

Example

Determine which of the following functions satisfy the hypotheses of the theorem on the previous slide.
(a) $\quad f(t)=\left\{\begin{array}{ll}1 /(t-1), & t \neq 1 \\ 0, & t=1\end{array}\right.$,
(b) $f(t)= \begin{cases}1, & 0 \leqslant t<5 \\ e^{t^{2}}, & 5 \leqslant t<\infty .\end{cases}$
(c) $f(t)= \begin{cases}e^{t^{2}}, & 0 \leqslant t<30 \\ e^{3 t} \sin (2 t), & t \geqslant 30 .\end{cases}$
(a) Not piecewise continuous at $t=1$. So the hypotheses are not satisfied.
(b) Not of exponential order. So the hypotheses are not satisfied.
(c) The hypotheses are satisfied, for $t \geqslant 30,|f(t)|=\left|\sin (t) e^{3 t}\right| \leqslant e^{3 t}$. By the theorem $\mathscr{L}\{f\}(s)$ is defined for $s>3$.

Contents

(1) Existence of Laplace Transform

(2) Translation Property of Laplace Transform
(3) The Laplace Transform and Derivatives

The Translation Property of Laplace Transform

- Let $f(t)=1$ so that $\mathscr{L}\{f(t)\}(s)=\mathscr{L}\left\{e^{0 \cdot t}\right\}(s)=1 / s$.

The Translation Property of Laplace Transform

- Let $f(t)=1$ so that $\mathscr{L}\{f(t)\}(s)=\mathscr{L}\left\{e^{0 \cdot t}\right\}(s)=1 / s$.
- We've seen that if $a \in \mathbb{R}$ is constant then

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}(s)
$$

The Translation Property of Laplace Transform

- Let $f(t)=1$ so that $\mathscr{L}\{f(t)\}(s)=\mathscr{L}\left\{e^{0 \cdot t}\right\}(s)=1 / s$.
- We've seen that if $a \in \mathbb{R}$ is constant then

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}(s)=\mathscr{L}\left\{e^{a t}\right\}(s)
$$

The Translation Property of Laplace Transform

- Let $f(t)=1$ so that $\mathscr{L}\{f(t)\}(s)=\mathscr{L}\left\{e^{0 \cdot t}\right\}(s)=1 / s$.
- We've seen that if $a \in \mathbb{R}$ is constant then

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}(s)=\mathscr{L}\left\{e^{a t}\right\}(s)=\frac{1}{s-a}
$$

The Translation Property of Laplace Transform

- Let $f(t)=1$ so that $\mathscr{L}\{f(t)\}(s)=\mathscr{L}\left\{e^{0 \cdot t}\right\}(s)=1 / s$.
- We've seen that if $a \in \mathbb{R}$ is constant then

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}(s)=\mathscr{L}\left\{e^{a t}\right\}(s)=\frac{1}{s-a}=\mathscr{L}\{f(t)\}(s-a) .
$$

The Translation Property of Laplace Transform

- Let $f(t)=1$ so that $\mathscr{L}\{f(t)\}(s)=\mathscr{L}\left\{e^{0 \cdot t}\right\}(s)=1 / s$.
- We've seen that if $a \in \mathbb{R}$ is constant then

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}(s)=\mathscr{L}\left\{e^{a t}\right\}(s)=\frac{1}{s-a}=\mathscr{L}\{f(t)\}(s-a) .
$$

In general \mathscr{L} converts multiplication by $e^{a t}$ into a translation of a units rightward.

The Translation Property of Laplace Transform

- Let $f(t)=1$ so that $\mathscr{L}\{f(t)\}(s)=\mathscr{L}\left\{e^{0 \cdot t}\right\}(s)=1 / s$.
- We've seen that if $a \in \mathbb{R}$ is constant then

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}(s)=\mathscr{L}\left\{e^{a t}\right\}(s)=\frac{1}{s-a}=\mathscr{L}\{f(t)\}(s-a) .
$$

In general \mathscr{L} converts multiplication by $e^{a t}$ into a translation of a units rightward.

Theorem

If the Laplace transform of a function f exists for $s>\alpha$, then

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}(s)=\mathscr{L}\{f(t)\}(s-a) \quad \text { for } s>\alpha+a .
$$

The Translation Property of Laplace Transform

- Let $f(t)=1$ so that $\mathscr{L}\{f(t)\}(s)=\mathscr{L}\left\{e^{0 \cdot t}\right\}(s)=1 / s$.
- We've seen that if $a \in \mathbb{R}$ is constant then

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}(s)=\mathscr{L}\left\{e^{a t}\right\}(s)=\frac{1}{s-a}=\mathscr{L}\{f(t)\}(s-a) .
$$

In general \mathscr{L} converts multiplication by $e^{a t}$ into a translation of a units rightward.

Theorem

If the Laplace transform of a function f exists for $s>\alpha$, then

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}(s)=\mathscr{L}\{f(t)\}(s-a) \quad \text { for } s>\alpha+a
$$

Example

Let $a \in \mathbb{R}$ be constant, $\omega>0$, and $n \in \mathbb{Z}_{\geqslant 1}$.
(a) Given that $\mathscr{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}}$ for $s>0$, calculate $\mathscr{L}\left\{e^{a t} \sin (\omega t)\right\}(s)$.

The Translation Property of Laplace Transform

- Let $f(t)=1$ so that $\mathscr{L}\{f(t)\}(s)=\mathscr{L}\left\{e^{0 \cdot t}\right\}(s)=1 / s$.
- We've seen that if $a \in \mathbb{R}$ is constant then

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}(s)=\mathscr{L}\left\{e^{a t}\right\}(s)=\frac{1}{s-a}=\mathscr{L}\{f(t)\}(s-a) .
$$

In general \mathscr{L} converts multiplication by $e^{a t}$ into a translation of a units rightward.

Theorem

If the Laplace transform of a function f exists for $s>\alpha$, then

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}(s)=\mathscr{L}\{f(t)\}(s-a) \quad \text { for } s>\alpha+a
$$

Example

Let $a \in \mathbb{R}$ be constant, $\omega>0$, and $n \in \mathbb{Z}_{\geqslant 1}$.
(a) Given that $\mathscr{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}}$ for $s>0$, calculate $\mathscr{L}\left\{e^{a t} \sin (\omega t)\right\}(s)$.
(b) Given that $\mathscr{L}\left\{t^{n}\right\}(s)=\frac{n!}{s^{n+1}}$ for $s>0$, calculate $\mathscr{L}\left\{e^{a t} t^{n}\right\}(s)$.

Contents

(1) Existence of Laplace Transform

(2) Translation Property of Laplace Transform

(3) The Laplace Transform and Derivatives

First Derivatives in t-space

We can derive an extremely useful relationship between $\mathscr{L}\{f(t)\}$ and $\mathscr{L}\left\{f^{\prime}(t)\right\}$.

First Derivatives in t-space

We can derive an extremely useful relationship between $\mathscr{L}\{f(t)\}$ and $\mathscr{L}\left\{f^{\prime}(t)\right\}$.
Theorem
Let $f:[0, \infty) \rightarrow \mathbb{R}$ be differentiable function such that

First Derivatives in t-space

We can derive an extremely useful relationship between $\mathscr{L}\{f(t)\}$ and $\mathscr{L}\left\{f^{\prime}(t)\right\}$.

Theorem

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be differentiable function such that

- $f^{\prime}(t)$ is piecewise continuous,

First Derivatives in t-space

We can derive an extremely useful relationship between $\mathscr{L}\{f(t)\}$ and $\mathscr{L}\left\{f^{\prime}(t)\right\}$.

Theorem

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be differentiable function such that

- $f^{\prime}(t)$ is piecewise continuous,
- $f(t)$ and $f^{\prime}(t)$ are both of exponential order α.

First Derivatives in t-space

We can derive an extremely useful relationship between $\mathscr{L}\{f(t)\}$ and $\mathscr{L}\left\{f^{\prime}(t)\right\}$.

Theorem

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be differentiable function such that

- $f^{\prime}(t)$ is piecewise continuous,
- $f(t)$ and $f^{\prime}(t)$ are both of exponential order α.

If $s>\alpha$ then

$$
\mathscr{L}\left\{f^{\prime}(t)\right\}(s)=s \mathscr{L}\{f(t)\}(s)-f(0) .
$$

First Derivatives in t-space

We can derive an extremely useful relationship between $\mathscr{L}\{f(t)\}$ and $\mathscr{L}\left\{f^{\prime}(t)\right\}$.

Theorem

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be differentiable function such that

- $f^{\prime}(t)$ is piecewise continuous,
- $f(t)$ and $f^{\prime}(t)$ are both of exponential order α.

If $s>\alpha$ then

$$
\mathscr{L}\left\{f^{\prime}(t)\right\}(s)=s \mathscr{L}\{f(t)\}(s)-f(0) .
$$

Example

Let $\omega>0$ be constant. Given that

$$
\mathscr{L}\{\sin (\omega t)\}(s)=\frac{\omega}{s^{2}+\omega^{2}}, \quad s>0
$$

Calculate
(a) $\mathscr{L}\{\cos (\omega t)\}$,
(c) $\mathscr{L}\left\{\sin ^{2}(\omega t)\right\}$,
(c) $\mathscr{L}\left\{\cos ^{2}(\omega t)\right\}$.

Higher Order Derivatives in t-space

Recursively applying the formula $\mathscr{L}\left\{f^{\prime}\right\}(s)=s \mathscr{L}\{f\}(s)-f(0)$ we obtain.

Corollary

Suppose $f:[0 . \infty) \rightarrow \mathbb{R}$ is a function such that

Higher Order Derivatives in t-space

Recursively applying the formula $\mathscr{L}\left\{f^{\prime}\right\}(s)=s \mathscr{L}\{f\}(s)-f(0)$ we obtain.

Corollary

Suppose $f:[0 . \infty) \rightarrow \mathbb{R}$ is a function such that

- $f(t), f^{\prime}(t), \ldots, f^{(n-1)}(t)$ are differentiable and $f^{(n)}$ is piecewise continuous.

Higher Order Derivatives in t-space

Recursively applying the formula $\mathscr{L}\left\{f^{\prime}\right\}(s)=s \mathscr{L}\{f\}(s)-f(0)$ we obtain.

Corollary

Suppose $f:[0 . \infty) \rightarrow \mathbb{R}$ is a function such that

- $f(t), f^{\prime}(t), \ldots, f^{(n-1)}(t)$ are differentiable and $f^{(n)}$ is piecewise continuous.
- $f(t), f^{\prime}(t), \ldots, f^{(n)}(t)$ are all of exponential order α

Higher Order Derivatives in t-space

Recursively applying the formula $\mathscr{L}\left\{f^{\prime}\right\}(s)=s \mathscr{L}\{f\}(s)-f(0)$ we obtain.

Corollary

Suppose $f:[0 . \infty) \rightarrow \mathbb{R}$ is a function such that

- $f(t), f^{\prime}(t), \ldots, f^{(n-1)}(t)$ are differentiable and $f^{(n)}$ is piecewise continuous.
- $f(t), f^{\prime}(t), \ldots, f^{(n)}(t)$ are all of exponential order α

Then for $s>\alpha$,

$$
\mathscr{L}\left\{f^{(n)}\right\}(s)=s^{n} \mathscr{L}\{f\}(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{(n-1)}(0) .
$$

In particular $\mathscr{L}\left\{f^{\prime \prime}\right\}(s)=s^{2} \mathscr{L}\{f\}(s)-s f(0)-f^{\prime}(0)$.

Higher Order Derivatives in t-space

Recursively applying the formula $\mathscr{L}\left\{f^{\prime}\right\}(s)=s \mathscr{L}\{f\}(s)-f(0)$ we obtain.

Corollary

Suppose $f:[0 . \infty) \rightarrow \mathbb{R}$ is a function such that

- $f(t), f^{\prime}(t), \ldots, f^{(n-1)}(t)$ are differentiable and $f^{(n)}$ is piecewise continuous.
- $f(t), f^{\prime}(t), \ldots, f^{(n)}(t)$ are all of exponential order α

Then for $s>\alpha$,

$$
\mathscr{L}\left\{f^{(n)}\right\}(s)=s^{n} \mathscr{L}\{f\}(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{(n-1)}(0) .
$$

In particular $\mathscr{L}\left\{f^{\prime \prime}\right\}(s)=s^{2} \mathscr{L}\{f\}(s)-s f(0)-f^{\prime}(0)$.

Example

Given that

$$
\mathscr{L}\left\{t^{5 / 2}\right\}=\frac{15 \sqrt{\pi}}{8 s^{7 / 2}}, \quad s>0
$$

Calculate the Laplace transform $\mathscr{L}\{\sqrt{t}\}$.

